PRODUCT OVERVIEW

SAM87 PRODUCT FAMILY

Samsung's SAM87 family of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide range of integrated peripherals, and various mask-programmable ROM sizes. Important CPU features include:

- Efficient register-oriented architecture
- Selectable CPU clock sources
- Release by interrupt of Idle and Stop power-down modes
- Built-in basic timer circuit with watchdog function

A sophisticated interrupt structure recognizes up to eight interrupt levels. Each level can have one or more interrupt sources and vectors. Fast interrupt processing (within a minimum six CPU clocks) can be assigned to specific interrupt levels.

S3C8835/C8837/P8837

The S3C8835 microcontroller has 16 K bytes of on-chip program memory and the S3C8837 has 24 K bytes. Both chips have a 272-byte general-purpose internal register file. The interrupt structure has seven interrupt sources with six interrupt vectors. The CPU recognizes six interrupt priority levels.

Using a modular design approach, the following peripherals were integrated with the SAM87 core to make the S3C8835/C8837/P8837 suitable for use in color television and other types of screen display applications:

- Four programmable I/O ports (26 pins total: 16 general-purpose I/O pins; 8 n-channel, open-drain output pins)
- 2 channel A/D converter (4-bit resolution)
- 14-bit PWM output (one channels: push-pull type)
- Basic timer (BT) with watchdog timer function
- One 8-bit timer/counter (TO) with interval timer
- One 8-bit general-purpose timer/counter (TA) with prescalers
- On-screen display (OSD) with a wide range of programmable features including halftone control signal output

The S3C8835/C8837 are available in a versatile 42-pin SDIP package.

OTP

The S3C8835/C8837 microcontroller is also available in OTP (One Time Programmable) version, S3P8837. S3P8837 microcontroller has an on-chip 24K-byte one-time-programmable EPROM instead of masked ROM. The S3P8837 is comparable to S3C8835/C8837, both in function and in pin configuration.

SAMSUNG

FEATURES

CPU

- SAM87 CPU core

Memory

- $16-\mathrm{K}$ byte (S3C8835) or 24 K - byte (S3C8837) internal program memory
- 272-byte general-purpose register area

Instruction Set

- 78 instructions
- IDLE and STOP instructions added for powerdown modes

Instruction Execution Time

- 750 ns (minimum) with an $8-\mathrm{MHz}$ CPU clock

Interrupts

- 7 interrupt sources with 6 vectors
- 6 interrupt levels
- Fast interrupt processing for select levels

General I/O

- Four I/O ports (26 pins total)
- Six open-drain pins for up to 6-volt loads
- Two open-drain pins for up to 5 -volt loads

8-Bit Basic Timer

- Three selectable internal clock frequencies
- Watchdog or oscillation stabilization function

Timer/Counters

- One 8-bit timer/counter (T0) with three internal clocks and interval timer mode.
- One general-purpose 8-bit timer/counters with interval timer mode (timer A)

A/D Converter

- Two analog input pins; 4-bit resolution
- $3.125 \mu \mathrm{~s}$ conversion time ($8-\mathrm{MHz}$ CPU clock)

Pulse Width Modulation Module

- 14-bit PWM with one-channel output (push-pull type)
- PWM counter and data capture input pin
- Frequency: 5.859 kHz to 23.437 kHz with a $6-\mathrm{MHz}$ CPU clock

On-Screen Display (OSD)

- Video RAM: 252×12 bits
- Character generator ROM: $256 \times 18 \times 16$ bits (256 display characters: fixed: 2, variable: 254)
- 252 display positions (12 rows $\times 21$ columns)
- $\quad 16$-dot $\times 18$-dot character resolution
- 16 different character sizes
- Eight character colors
- Vertical direction fade-in/fade-out control
- Eight colors for character and frame background
- Halftone control signal output; selectable for individual characters
- Synchronous polarity selector for H -sync and V-sync input

Oscillator Frequency

- $5-\mathrm{MHz}$ to $8-\mathrm{MHz}$ external crystal oscillator
- Maximum 8-MHz CPU clock

Operating Temperature Range

- $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Operating Voltage Range

- 4.5 V to 5.5 V

Package Type

- 42-pin SDIP

BLOCK DIAGRAM

Figure 1-1. Block Diagram

PIN ASSIGNMENTS

Figure 1-2. S3C8835/C8837/P8837 Pin Assignment Diagram

Table 1-1. S3C8835/C8837 Pin Descriptions

Pin Name	Pin Type	Pin Description	Circuit Type	Pin Numbers	Share Pins
P0.0-P0.7	I/O	General I/O port (8-bit), configurable for digital input or push-pull output.	3	$\begin{gathered} 11-12,35, \\ 38-42 \end{gathered}$	
P1.0-P1.1	I/O	General I/O port (2-bit), configurable for digital input or n -channel open-drain output. P1.0-P1.1 can withstand up to 6 -volt loads. Multiplexed for alternative use as external interrupt inputs INTO-INT1.	7	14-15	INTO-INT1
P1.2-P1.5		General I/O port (4-bit), configurable for digital input or n -channel open-drain output. P1.2-P1.5 can withstand up to 6 -volt loads. High current port (10 mA).	5	16-19	
P1.6-P1.7		General I/O port (2-bit), configurable for digital input or push-pull output.	3	20, 8	
$\begin{array}{\|l} \hline \text { P2.0-P2.4, } \\ \text { P2. } 6 \end{array}$	1/O	General I/O port (6-bit). I/O mode or n-channel open-drain, push-pull output mode is software configurable. Pins can withstand up to 5 -volt loads. P2.2: OTP serial clock pin P2.3: OTP serial data pin	2	2-7	
P2.5, P2.7		General I/O port (2-bit). I/O mode or n-channel open-drain, push-pull output mode is software configurable. Pins can withstand up to 5 -volt loads. Each pin has an alternative function. P2.5: PWM0 (14-bit PWM output) P2.7: OSDHT (Halftone signal output)	2	1,21	PWM0 OSDHT

Table 1-1. S3C8835/C8837 Pin Descriptions (Continued)

Pin Name	$\begin{gathered} \text { Pin } \\ \text { Type } \\ \hline \end{gathered}$	Pin Description	Circuit Type	Pin Numbers	Share Pins
P3.0-P3.1	I/O	General I/O port (2 bits), configurable for digital input or n-channel open-drain output. P3.0-P3. 1 can withstand up to 5 -volt loads. Multiplexed for alternative use as external interrupt inputs ADCO-ADC1.	6	9-10	$\begin{aligned} & \text { ADC0 } \\ & \text { ADC1 } \end{aligned}$
PWM0	0	Output pin for 14-bit PWM0 circuit	2	1	P2.5
ADC0-ADC1	1	Analog inputs for 4-bit A/D converter	6	9,10	$\begin{aligned} & \hline \text { P3.0- } \\ & \text { P3.1 } \end{aligned}$
INT0-INT1	1	External interrupt input pins	7	14,15	$\begin{aligned} & \hline \text { P1.0- } \\ & \text { P1.1 } \end{aligned}$
OSDHT	0	Halftone control signal output for OSD	2	21	P2.7
Vblue, Vgreen Vred, Vblank	0	Digital blue, green, red, and video blank signal outputs for OSD	4	22-25	-
H-sync	1	H-sync input for OSD	8	26	-
V-sync		V-sync input for OSD		27	
$\mathrm{OSC}_{\text {IN }}, \mathrm{OSC}_{\text {OUT }}$	I, O	L-C oscillator pins for OSD clock frequency generation	-	28,29	-
TEST	1	0 V: Normal operation mode 5 V: Factory test mode 12.5 V : OTP write mode	-	13	-
$\mathrm{X}_{\text {IN, }} \mathrm{X}_{\text {OUT }}$	I, O	System clock pins	-	31, 32	-
RESET	1	System reset input pin	1	33	-
$\mathrm{V}_{\mathrm{DD},} \mathrm{V}_{\mathrm{SS} 1,} \mathrm{~V}_{\mathrm{SS} 2}$	-	Power supply pins	-	13	-
CAPA	1	Input for capture A module	8	26	-

PIN CIRCUITS

Figure 1-3. Pin Circuit Type 1 (RESET)

Figure 1-4. Pin Circuit Type 2
(P2.0-P2.7, PWM0, OSDHT)

Figure 1-5. Pin Circuit Type 3 (P0.0-P0.7, P1.6-P1.7)

Figure 1-6. Pin Circuit Type 4 (Vblue, Vgreen, Vred, Vblank)

Figure 1-7. Pin Circuit Type 5 (P1.2-P1.5)

Figure 1-9. Pin Circuit Type 7 (P1.0-P1.1, INT0-INT1)

Figure 1-10. Pin Circuit Type 8 (V-Sync H-Sync, CAPA)

15
 ELECTRICAL DATA

OVERVIEW

In this section, S3C8835/C8837 electrical characteristics are presented in tables and graphs. The information is arranged in the following order:

- Absolute maximum ratings
- D.C. electrical characteristics
- I/O capacitance
- A.C. electrical characteristics
- Input timing measurement points for t_{NF} and $\mathrm{t}_{\mathrm{NF} 2}$
- Data retention supply voltage in Stop mode
- Stop mode release timing when initiated by RESET
- Main oscillator and L-C oscillator frequency
- Clock timing measurement points for X_{IN}
- Main oscillator clock stabilization time (tsT)
- A/D converter electrical characteristics
- Characteristic curves

Table 15-1. Absolute Maximum Ratings
$\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Rating	Unit
Supply Voltage	V_{DD}	-	-0.3 to +6.0	V
Input Voltage	V_{11}	P1.0-P1.5 (open-drain)	-0.3 to +7	V
	V_{12}	All port pins except V_{11}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	
Output Voltage	V_{O}	All output pins	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output Current High	I_{OH}	One I/O pin active	- 18	mA
		All I/O pins active	-60	
Output Current Low	I_{OL}	One I/O pin active	+ 30	mA
		Total pin current for port 1	+ 100	
		Total pin current for ports 0, 2, and 3	+ 100	
Operating Temperature	$\mathrm{T}_{\text {A }}$	-	-20 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-	-65 to +150	${ }^{\circ} \mathrm{C}$

Table 15-2. D.C. Electrical Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5.5 V)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Input High Voltage	$\mathrm{V}_{\mathrm{HH} 1}$	All input pins except $\mathrm{V}_{\mathrm{IH} 2}$	$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
	$\mathrm{V}_{\mathrm{H} 2}$	$\mathrm{X}_{\text {IN, }} \mathrm{X}_{\text {OUT }}$	2.7 V			
Input Low Voltage	$\mathrm{V}_{\mathrm{IL} 1}$	All input pins except $\mathrm{V}_{\text {IL2 }}$	-	-	$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\mathrm{IL} 2}$	$\mathrm{X}_{\text {IN, }}, \mathrm{X}_{\text {OUT }}$			1.0 V	
Output High Voltage	V_{OH}	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{OH}}=-500 \mu \mathrm{~A} \\ & \text { PO, P1.6-P1.7, P2 } \\ & \mathrm{R}, \mathrm{G}, \mathrm{~B}, \text { Vblank } \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}-0.8$	-	-	V
Output Low Voltage	$\mathrm{V}_{\text {OL1 }}$	$\begin{aligned} & \mathrm{IOL}=4 \mathrm{~mA} \\ & \mathrm{PO}, \mathrm{P} 1.6-\mathrm{P} 1.7 \end{aligned}$	-	-	0.4	V
	$\mathrm{V}_{\text {OL2 }}$	$\begin{aligned} & \hline \mathrm{IOL}=10 \mathrm{~mA} \\ & \mathrm{P} 1.2-\mathrm{P} 1.5 \end{aligned}$	-	-	0.8	
	$\mathrm{V}_{\text {OL3 }}$	$\begin{array}{\|l\|} \hline \mathrm{IOL}=2 \mathrm{~mA} \\ \text { P1.0-P1.1, P3.0-P3. } \\ \hline \end{array}$	-	-	0.4	
	$\mathrm{V}_{\text {OL4 }}$	$\begin{aligned} & \hline \mathrm{IOL}=1 \mathrm{~mA} \\ & \mathrm{R}, \mathrm{G}, \mathrm{~B}, \text { Vblank, P2 } \\ & \hline \end{aligned}$	-	-	0.4	V

Table 15-2. D.C. Electrical Characteristics (Continued)
$\left(\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5.5 V)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Input High Leakage Current	ILH^{\prime}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ All input pins except $\mathrm{I}_{\mathrm{LIH} 2}$ and $\mathrm{ILH}_{\mathrm{LH}}$	-	-	3	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {LIH2 }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD },}$ OSC $_{\text {IN },}$ OSC $_{\text {OUT }}$			10	
	$\mathrm{I}_{\text {LIH3 }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD },}, \mathrm{X}_{\text {IN }}, \mathrm{X}_{\text {OUT }}$	2.5	10	20	
Input Low Leakage Current	ILLL^{1}	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ All input pins except $\mathrm{I}_{\mathrm{LIL} 2}$, $\mathrm{I}_{\mathrm{LLL} 3}$, and RESET	-	-	-3	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {LIL2 }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, OSC $_{\text {IN }}$, OSC ${ }_{\text {OUT }}$			-10	
	$\mathrm{I}_{\text {LIL3 }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{X}_{\text {IN }}, \mathrm{X}_{\text {OUT }}$	-2.5	-10	-20	
Output High Leakage Current	$\mathrm{I}_{\text {LOH1 }}$	$\begin{array}{\|l} \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}} \\ \text { All output pins except } \mathrm{I}_{\text {LOH2 }} \end{array}$	-	-	3	$\mu \mathrm{A}$
	${ }^{\text {LOH2 }}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=6 \mathrm{~V} \\ & \text { P1.0-P1.5 } \end{aligned}$			10	
Output Low Leakage Current	${ }_{\text {L LOL }}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ All output pins	-	-	-3	$\mu \mathrm{A}$
Supply Current (note)	$\mathrm{I}_{\mathrm{DD} 1}$	Normal mode; $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5.5 V $8-\mathrm{MHz}$ CPU clock	-	7	20	mA
	$\mathrm{I}_{\mathrm{DD} 2}$	Idle mode; $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5.5 V 8-MHz CPU clock		2	10	
	$\mathrm{I}_{\text {DD3 }}$	Stop mode; $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$		1	10	$\mu \mathrm{A}$

NOTE: Supply current does not include current drawn through internal pull-up resistors or external output current loads.

Table 15-3. Input/Output Capacitance

$$
\left(\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}\right)
$$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Input capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}$; unmeasured pins are connected to V_{SS}	-	-	10	pF
Output capacitance	$\mathrm{C}_{\text {OUT }}$					
I/O capacitance	C_{10}					

Table 15-4. A.C. Electrical Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5.5 V$)$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
V-sync Pulse Width	t_{Vw}	-	4	-	-	$\mu \mathrm{S}$
H-sync Pulse Width	$\mathrm{t}_{\text {HW }}$	-	3	-	-	$\mu \mathrm{s}$
Noise Filter	$\mathrm{t}_{\mathrm{NF} 1}$	P1.0-P1.1, V-sync	-	350	-	ns
	$\mathrm{t}_{\mathrm{NF} 2}$	RESET	-	1000		
	$\mathrm{t}_{\mathrm{NF} 3}$	Glitch filter (oscillator block)	-	15		
	$\mathrm{t}_{\text {NF4 }}$	CAPA	-	5	-	$\mathrm{t}_{\text {CAPA }}$
	$\mathrm{t}_{\text {NF5 }}$	H-sync	-	650	-	ns

NOTE: $t_{\text {CAPA }}=\mathrm{f}_{\mathrm{OSC}} / 128$.

Figure 15-1. Input Timing Measurement Points for $\mathbf{t}_{\mathrm{NF} 1}$ and $\mathbf{t}_{\mathrm{NF} 2}$

Table 15-5. Data Retention Supply Voltage in Stop Mode
$\left(\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Data Retention Supply Voltage	$\mathrm{V}_{\text {DDDR }}$	Stop mode	2	-	6	V
Data Retention Supply Current	$\mathrm{I}_{\text {DDDR }}$	Stop mode, $\mathrm{V}_{\text {DDDR }}=2.0 \mathrm{~V}$	-	-	5	$\mu \mathrm{~A}$

NOTES:

1. Supply current does not include current drawn through internal pull-up resistors or external output current loads.
2. During the oscillator stabilization wait time ($\mathrm{t}_{\mathrm{WAIT}}$), all CPU operations must be stopped.

Figure 15-2. Stop Mode Release Timing When Initiated by a Reset

Table 15-6. Main Oscillator and L-C Oscillator Frequency
$\left(\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5.5 V$)$

Oscillator	Clock Circuit	Conditions	Min	Typ	Max	Unit
Crystal						

Figure 15-3. Clock Timing Measurement Points for $X_{I N}$

Table 15-7. Main Oscillator Clock Stabilization Time
$\left(\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5.5 V)

Oscillator	Symbol	Test Condition	Min	Typ	Max	Unit
Crystal	-	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 6.0 \mathrm{~V}$ (Oscillation stabilization occurs when $V_{D D}$ is equal to the minimum oscillator voltage range.)	-	-	20	ms
Ceramic					10	
External Clock		$\mathrm{X}_{\text {IN }}$ input High and Low level width ($t_{\mathrm{XH}}, \mathrm{t}_{\mathrm{XL}}$)	65	-	100	ns
Release Signal Setup Time	$t_{\text {SREL }}$	Normal operation	-	1000	-	ns
Oscillation Stabilization Wait Time ${ }^{(1)}$	${ }^{\text {twait }}$	CPU clock $=8 \mathrm{MHz}$; Stop mode released by RESET	-	8.3	-	ms
		CPU clock = 8 MHz ; Stop mode released by an interrupt		(2)		

NOTES:

1. Oscillation stabilization time is the time required for the CPU clock to return to its normal oscillation frequency after a power-on occurs, or when Stop mode is released.
2. The oscillation stabilization interval is determined by the basic timer (BT) input clock setting.

Table 15-8. A/D Converter Electrical Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Absolute Accuracy (1)	-	CPU clock $=8 \mathrm{MHz}$	-	-	± 0.5	LSB
Conversion Time (2)	${ }^{\text {c }}$ CON		$\begin{gathered} \mathrm{t}_{\mathrm{CPU}} \times 25 \\ (3) \\ \hline \end{gathered}$	-		$\mu \mathrm{s}$
Analog Input Voltage	$\mathrm{V}_{\text {IAN }}$	-	V_{SS}	-	V_{DD}	V
Analog Input Impedance	$\mathrm{R}_{\text {AN }}$	-	2		-	$\mathrm{M} \Omega$

NOTES:

1. Excluding quantization error, absolute accuracy values are within $\pm 1 / 2$ LSB.
2. 'Conversion time' is the time required from the moment a conversion operation starts until it ends.
3. The unit $\mathrm{t}_{\mathrm{CPU}}$ means one CPU clock period.

16
 MECHANICAL DATA

OVERVIEW

The S3C8835/C8837 microcontrollers are available in a 42-pin SIP package (42-SDIP-600).

Figure 16-1. 42-Pin SDIP Package Mechanical Data (42-SDIP-600)

17
 S3P8837 OTP

OVERVIEW

The S3P8837 single-chip CMOS microcontroller is the OTP (One Time Programmable) version of the S3C8835/C8837 microcontroller. It has an on-chip OTP ROM instead of masked ROM. The EPROM is accessed by serial data format.

The S3P8837 is fully compatible with the S3C8835/C8837, both in function and in pin configuration. Because of its simple programming requirements, the S3P8837 is ideal for use as an evaluation chip for the S3C8835/C8837.

NOTE: The bolds indicate an OTP pin name.

Figure 17-1. S3P8837 Pin Assignments (42-SDIP)

Table 17-1. Descriptions of Pins Used to Read/Write the EPROM

Main Chip Pin Name	During Programming			
	Pin Name	Pin No.	I / O	Function
P2.2 (Pin 3)	SCLK	4	I / O	Serial data Pin (Output when reading, Input when writing) Input and Push-pull Output Port can be assigned
TEST	V_{PP} (TEST)	13	I	$0 \mathrm{~V}:$ Operating mode $5 \mathrm{~V}:$ Test mode $12.5 \mathrm{~V}:$ OTP mode
RESET	RESET	33	I	$0 \mathrm{~V}:$ Chip initialization, OTP mode $5 \mathrm{~V}:$ Operating mode
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$	$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$	$34 / 30,37$	I	Logic Power Supply Pin.

Table 17-2. Comparison of S3P8837 and S3C8835/C8837 Features

Characteristic	S3P8837	S3C8835/C8837
Program Memory	24 K-byte EPROM	24K-byte mask ROM
Operating Voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$	4.5 V to 5.5 V	4.5 V to 5.5 V
OTP Programming Mode	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}(\mathrm{TEST})=12.5 \mathrm{~V}$	
Pin Configuration	$42-$ SDIP	42 -SDIP
EPROM Programmability	User Program 1 time	Programmed at the factory

